Genome-wide selection on codon usage at the population level in the fungal model organism Neurospora crassa.
نویسندگان
چکیده
Many organisms exhibit biased codon usage in their genome, including the fungal model organism Neurospora crassa. The preferential use of subset of synonymous codons (optimal codons) at the macroevolutionary level is believed to result from a history of selection to promote translational efficiency. At present, few data are available about selection on optimal codons at the microevolutionary scale, that is, at the population level. Herein, we conducted a large-scale assessment of codon mutations at biallelic sites, spanning more than 5,100 genes, in 2 distinct populations of N. crassa: the Caribbean and Louisiana populations. Based on analysis of the frequency spectra of synonymous codon mutations at biallelic sites, we found that derived (nonancestral) optimal codon mutations segregate at a higher frequency than derived nonoptimal codon mutations in each population; this is consistent with natural selection favoring optimal codons. We also report that optimal codon variants were less frequent in longer genes and that the fixation of optimal codons was reduced in rapidly evolving long genes/proteins, trends suggestive of genetic hitchhiking (Hill-Robertson) altering codon usage variation. Notably, nonsynonymous codon mutations segregated at a lower frequency than synonymous nonoptimal codon mutations (which impair translational efficiency) in each N. crassa population, suggesting that changes in protein composition are more detrimental to fitness than mutations altering translation. Overall, the present data demonstrate that selection, and partly genetic interference, shapes codon variation across the genome in N. crassa populations.
منابع مشابه
Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene lengt...
متن کاملCodon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation
Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons res...
متن کاملNuclear and Genome Dynamics in Multinucleate Ascomycete Fungi
Genetic variation between individuals is essential to evolution and adaptation. However, intra-organismic genetic variation also shapes the life histories of many organisms, including filamentous fungi. A single fungal syncytium can harbor thousands or millions of mobile and potentially genotypically different nuclei, each having the capacity to regenerate a new organism. Because the dispersal ...
متن کاملGenomics in Neurospora crassa: From One-Gene- One-Enzyme to 10,000 Genes
Neurospora crassa was the central organism in the development of biochemical genetics, providing a model system that established the relationship between genes and enzymes; it remains the best-studied filamentous fungus. This review focuses on the impact that the recent publication of a high-quality draft sequence of the N. crassa genome will have upon efforts to understand the biology of the f...
متن کاملStrong selection at the level of codon usage bias: evidence against the Li-Bulmer model
Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm, genome-wide population genetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2012